Laminin A is required for follicle cell–oocyte signaling that leads to establishment of the anterior–posterior axis in Drosophila
نویسندگان
چکیده
The establishment of the anterior-posterior (AP) axis in Drosophila melanogaster requires signaling between the oocyte and surrounding somatic follicle cells during oogenesis [1] [2]. First, a signal from the oocyte (Gurken (Grk), a transforming growth factor-alpha (TGFalpha) homolog) is received by predetermined terminal follicle cells in which the epidermal growth factor receptor (EGFR) pathway is activated and a posterior fate is induced [2] [3] [4]. Later, the posterior follicle cells send an unidentified signal back to the oocyte, which leads to the reorganization of its cytoskeletal polarity. This reorganization is required for proper localization of maternal determinants, such as oskar (osk) and bicoid (bcd) mRNAs, that determine the AP polarity of the oocyte and the subsequent embryo [2]. We show here that when the gene lanA, which encodes the extracellular matrix component laminin A, is mutated in posterior follicle cells, localization of AP determinants is disrupted in the underlying oocyte. Posterior follicle-cell differentiation and follicle cell apical-basal polarity are unaffected in the lanA mutant cells, suggesting that laminin A is required for correct signaling from the posterior follicle cells that polarizes the oocyte. This is the first evidence that the extracellular matrix is involved in the establishment of a major body axis.
منابع مشابه
Post-transcriptional regulation of gurken by encore is required for axis determination in Drosophila.
Establishment of anterior-posterior and dorsal-ventral polarity within the Drosophila egg chamber requires signaling between the germline and the somatic cells of the ovary. The gene gurken (grk) encodes a TGFalpha-like protein that is localized within the developing oocyte and is thought to locally activate torpedo/Egfr (top/Egfr), the Drosophila homolog of the EGF receptor, which is expressed...
متن کاملCell-cell signaling, microtubules, and the loss of symmetry in the drosophila oocyte
The Drosophila oocyte, although often thought of as an undifferentiated cell, is in fact highly polarized, and the subcellular organization of the oocyte is critical for subsequent development of the embryo. Recent results show that cell-cell signaling between the germline and the somatic components of the egg chamber establish the dorsal-ventral and anterior-posterior axes of the egg and conse...
متن کاملCombined activities of Gurken and decapentaplegic specify dorsal chorion structures of the Drosophila egg.
During Drosophila oogenesis Gurken, associated with the oocyte nucleus, activates the Drosophila EGF receptor in the follicular epithelium. Gurken first specifies posterior follicle cells, which in turn signal back to the oocyte to induce the migration of the oocyte nucleus from a posterior to an anterior-dorsal position. Here, Gurken signals again to specify dorsal follicle cells, which give r...
متن کاملThe Salvador-Warts-Hippo Pathway Is Required for Epithelial Proliferation and Axis Specification in Drosophila
In Drosophila, the body axes are specified during oogenesis through interactions between the germline and the overlying somatic follicle cells [1-5]. A Gurken/TGF-alpha signal from the oocyte to the adjacent follicle cells assigns them a posterior identity [6, 7]. These posterior cells then signal back to the oocyte, thereby inducing the repolarization of the microtubule cytoskeleton, the migra...
متن کاملspindle-C (spn-C) and okra (okr), cause a delay in oocyte determination and a failure to accumulate Grk protein, leading to defects in AP and DV patterning in late oogenesis
Polarization of the anteroposterior (AP) axis of the Drosophila oocyte occurs early in oogenesis, while the presumptive oocyte is still in the germarium (Gonzalez-Reyes and St Johnston, 1998). The dorsoventral (DV) axis is set up much later and relies on transfer of the AP axis polarity from the oocyte to the somatic follicle cells at the posterior end of the oocyte. During stages 4-6 in wild-t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 10 شماره
صفحات -
تاریخ انتشار 2000